skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Yoo_Jung"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present numerical characterizations of the wavefront sensing performance for few-mode photonic lantern wavefront sensors (PLWFSs). These characterizations include calculations of the throughput, control space, sensor linearity, and an estimate of the maximum linear reconstruction range for standard and hybrid lanterns with between 3 and 19 ports, atλ=1550nm. We additionally consider the impact of beam-shaping optics and a charge-1 vortex mask placed in the pupil plane. The former is motivated by the application of PLs to high-resolution spectroscopy, which could enable efficient injection into the spectrometer along with simultaneous focal-plane wavefront sensing; similarly, the latter is motivated by the application of PLs to vortex fiber nulling (VFN), which can simultaneously enable wavefront sensing and the nulling of on-axis starlight. Overall, we find that the PLWFS setups tested in this work exhibit good linearity out to ∼0.25−0.5 radians of RMS wavefront error (WFE). Meanwhile, we estimate the maximum amount of WFE that can be handled by these sensors to be around ∼1−2 radians RMS before the sensor response becomes degenerate. In the future, we expect these limits can be pushed further by increasing the number of degrees of freedom, either by adopting higher mode-count lanterns, dispersing lantern outputs, or separating polarizations. Finally, we consider optimization strategies for the design of the PLWFS, which involve both modification of the lantern itself and the use of pre- and post-lantern optics like phase masks and interferometric beam recombiners. 
    more » « less